Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech III Year I Semester Regular Examinations March-2023 AGRICULTURAL PROCESS ENGINEERING

(Agricultural Engineering)

	(Agricultural Engineering)			
	Time: 3 hours	Max. Marks: 60		
	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I			
1	Explain the possible force-deformation curve for an agricultural product. OR	CO2	L1	12M
2	a Define porosity and explain the method for determination of porosity with neat sketch.	CO2	L1	6M
	b Explain the Toughness, Resilience and Stiffness with neat sketch. UNIT-II	CO2	L2	6M
3	a What is a drag coefficient? Draw the forces acting on a body immersed in	CO2	L1	6M
	fluid with suitable equations.			
	b Define terminal velocity and derive equation for terminal velocity of a particle with neat sketch.	CO2	L3	6M
	OR			
4	a Explain the relationship between conductivity and resistivity of a material with equations.	CO3	L2	6M
	b Write about dielectric materials and discuss the importance of dielectric materials food engineering.	CO3	L2	6M
	UNIT-III			
5	a A screen is used to separate two components (A and B) from a feed where F, O and U are taken as mass flow rates of feed, overflow and underflow streams, respectively. The corresponding mass fraction of the oversize component A in these streams is Xf, Xo and Xu. Derive an expression for overall effectiveness of this screen.	CO4	L3	6M
	b Explain rotary air screen cleaner with neat sketch.	CO4	L2	6M
	OR			01.1
6	A cyclone separator having the following specifications is used to collect particles of specific gravity 1.2. Cyclone diameter=180 cm; Air inlet diameter=30	CO4	L3	12M
	cm; Separating height= 2.5 of dia. Of inlet; Helix pitch=15°; Inlet width=10 cm and Entry particle velocity= 15 m/s. Compute the smallest particle which can be collected. Estimate the pressure drop through the unit. UNIT-IV			
7	a Explain working principle of Ball mill with neat sketch.	CO4	L2	8M
	b How much power is required to crush 2 t/hr of a material if 80% of the feed passes through IS sieve No. 480 (4.75 mm opening) and 80% of the product passes through IS sieve No. 50 (0.5 mm opening)?. Given the work index of the material as 6.30.	CO4	L2	4M

	Q.P. Code: 20AG0708		R20		
	OR				
8	a State Kicks, Rittinger's and bonds law for energy requirement with related	CO4	L1	6M	
	equations.				
	b Explain working principle of Attrition mill with neat sketch.	CO4	L2	6M	
	UNIT-V				
9	a Explain dry milling process of pulses with neat flow chart.	CO5	L2	6M	
	b Explain rotary and centrifugal filters with neat sketch.	CO6	L2	6M	
	OR OR				
10	a Explain CFTRI method of parboiling.	CO5	L2	6M	
	b Explain working mechanism of rubber roll sheller with neat sketch.	CO5	L2	6M	

*** END ***